Refinement types in Haskell: Exercise Sheet 2

April 10, 2025

Exercise 1. Give a well-typed definition of the Ackermann function in Liquid Haskell. Hint: you'll need to use termination metrics to prove that it terminates.

Exercise 2. Recall the following definition of de Bruijin lambda terms in Liquid Haskell:

 $\{-@ type Nat = \{ n:Int | n \ge 0 \} @-\}$

data Expr = Var Int | Lam Expr | App Expr Expr
{-@ data Expr = Var Nat | Lam Expr | App Expr Expr @-}

Part 1. Using measures (and reflection if you wish) define the type of *closed* lambda terms.

Part 2. Define a function that β -normalises a closed lambda term.

Bonus exercise: define the type of lambda expressions indexed over the number of free variables i.e. de Bruijin indexed lambda terms. This can be done either with a record that contains an explicit representative of the number of free variables or with type level indexing.

Exercise 3. Recall that Hutton's razor is the simple expression language defined as follows:

data Expr = Val Int | Add Expr Expr eval :: Expr -> Int eval (Val n) = n eval (Add x y) = eval x + eval y

Part 1. Define your own list type List with a custom length measure and a concatenation function.

Part 2. Consider the following types for a stack, instruction and program:

type Stack = List Int data Instr = PUSH Int | ADD type Code = List Instr Part 3. Define a stack-based execution function for Hutton's razor of the form: exec :: Code -> Stack -> Stack Part 4. Define a compiler for Hutton's razor of the form: comp :: Expr -> Code Part 5. Construct a proof of the following correctness theorem for your compiler: {-@ correctness :: e:Expr -> c:Code -> s:Stack ->

{ exec (comp e ++ c) s = exec c (Cons (eval e) s) } O-

Hint: Ensure that you make liberal use of reflection and proof by logical evaluation!