Refinement types in Haskell:
Exercise Sheet 2

April 10, 2025

Exercise 1. Give a well-typed definition of the Ackermann function in Liquid Haskell.
Hint: you’ll need to use termination metrics to prove that it terminates.

Exercise 2. Recall the following definition of de Bruijin lambda terms in Liquid Haskell:

{-@ type Nat = { n:Int | n >= 0 } @-}

data Expr = Var Int | Lam Expr | App Expr Expr
{-0@ data Expr = Var Nat | Lam Expr | App Expr Expr @-}

Part 1. Using measures (and reflection if you wish) define the type of closed lambda
terms.

Part 2. Define a function that S-normalises a closed lambda term.

Bonus exercise: define the type of lambda expressions indexed over the number of free
variables i.e. de Bruijin indexed lambda terms. This can be done either with a record
that contains an explicit representative of the number of free variables or with type level
indexing.

Exercise 3. Recall that Hutton’s razor is the simple expression language defined as
follows:

data Expr = Val Int | Add Expr Expr
eval :: Expr -> Int

eval (Val n) =n
eval (Add x y) = eval x + eval y

Part 1. Define your own list type List with a custom length measure and a concate-
nation function.

Part 2. Consider the following types for a stack, instruction and program:

List Int

type Stack

data Instr PUSH Int | ADD

type Code = List Instr

Part 3. Define a stack-based execution function for Hutton’s razor of the form:
exec :: Code -> Stack -> Stack

Part 4. Define a compiler for Hutton’s razor of the form:

comp :: Expr -> Code

Part 5. Construct a proof of the following correctness theorem for your compiler:

{-@ correctness :: e:Expr -> c:Code -> s:Stack —>
{ exec (comp e ++ ¢) s = exec ¢ (Cons (eval e) s) }

-}

Hint: Ensure that you make liberal use of reflection and proof by logical evaluation!

