
Refinement types in Haskell:
Exercise Sheet 2

April 10, 2025

Exercise 1. Give a well-typed definition of the Ackermann function in Liquid Haskell.
Hint: you’ll need to use termination metrics to prove that it terminates.

Exercise 2. Recall the following definition of de Bruijin lambda terms in Liquid Haskell:

{-@ type Nat = { n:Int | n >= 0 } @-}

data Expr = Var Int | Lam Expr | App Expr Expr

{-@ data Expr = Var Nat | Lam Expr | App Expr Expr @-}

Part 1. Using measures (and reflection if you wish) define the type of closed lambda
terms.

Part 2. Define a function that β-normalises a closed lambda term.

Bonus exercise: define the type of lambda expressions indexed over the number of free
variables i.e. de Bruijin indexed lambda terms. This can be done either with a record
that contains an explicit representative of the number of free variables or with type level
indexing.

1

Exercise 3. Recall that Hutton’s razor is the simple expression language defined as
follows:

data Expr = Val Int | Add Expr Expr

eval :: Expr -> Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

Part 1. Define your own list type List with a custom length measure and a concate-
nation function.

Part 2. Consider the following types for a stack, instruction and program:

type Stack = List Int

data Instr = PUSH Int | ADD

type Code = List Instr

Part 3. Define a stack-based execution function for Hutton’s razor of the form:

exec :: Code -> Stack -> Stack

Part 4. Define a compiler for Hutton’s razor of the form:

comp :: Expr -> Code

Part 5. Construct a proof of the following correctness theorem for your compiler:

{-@ correctness :: e:Expr -> c:Code -> s:Stack ->

{ exec (comp e ++ c) s = exec c (Cons (eval e) s) }

@-}

Hint: Ensure that you make liberal use of reflection and proof by logical evaluation!

2

