
Refinement Types in Haskell

Lecture 1: Introduction to refinement types

Brandon Hewer

1



Motivation

Type systems are useful.*

*If we care about our code being correct.

2



Motivation

Type systems are useful.*

*If we care about our code being correct.

2



Motivation

Expressive type systems are more useful.

3



Motivation

Dependent types give rise to particularly expressive type systems

whereby programs correspond to constructive mathematical proofs.

For example, we can define safe list-indexing in Idris as follows:

index : Fin len → Vect len elem → elem

index FZ (x :: xs) = x

index (FS k) (x :: xs) = index k xs

4



Motivation

Dependent types give rise to particularly expressive type systems

whereby programs correspond to constructive mathematical proofs.

For example, we can define safe list-indexing in Idris as follows:

index : Fin len → Vect len elem → elem

index FZ (x :: xs) = x

index (FS k) (x :: xs) = index k xs

4



Motivation

However, the expressive power of dependent types comes with a

variety of costs. We will primarily focus on just one of these:

It is very challenging to introduce dependent types to an existing

language’s ecosystem.

Data point: Dependent Haskell

5



Motivation

However, the expressive power of dependent types comes with a

variety of costs. We will primarily focus on just one of these:

It is very challenging to introduce dependent types to an existing

language’s ecosystem.

Data point: Dependent Haskell

5



Motivation

A refinement type system equips an existing type system with an

‘extra layer’ of erasable typing.

This extra layer allows us to refine types to capture additional

decidable properties, i.e. non-empty lists, integers greater than 5.

Erasure corresponds to stripping away this extra layer and

forgetting the additional properties that we captured.

6



Motivation

A refinement type system equips an existing type system with an

‘extra layer’ of erasable typing.

This extra layer allows us to refine types to capture additional

decidable properties, i.e. non-empty lists, integers greater than 5.

Erasure corresponds to stripping away this extra layer and

forgetting the additional properties that we captured.

6



Motivation

A refinement type system equips an existing type system with an

‘extra layer’ of erasable typing.

This extra layer allows us to refine types to capture additional

decidable properties, i.e. non-empty lists, integers greater than 5.

Erasure corresponds to stripping away this extra layer and

forgetting the additional properties that we captured.

6



Motivation

By requiring decidability, refinement type systems prioritise

inference and automation first and improving expressivity is an

ongoing goal.

This is in contrast to dependent type systems that typically

prioritise expressivity first and for which proof automation is an

ongoing goal.

7



Course Outline

This course will provide an introduction to refinement types in

Liquid Haskell.

We will both consider applications of refinement types to

general-purpose functional programming and introduce the key

theoretical concepts.

We will also cover some advanced techniques, including

termination metrics and higher-order reasoning via abstract

refinements. In the final lecture, we will introduce quotient types

within the context of a refinement type system.

8



Course Outline

You can install Liquid Haskell locally or use the online editor at:

https://liquidhaskell.goto.ucsd.edu/index.html

9



Course Outline

Lecture 1: Introduction to refinement types

Lecture 2: Refinement logic, datatypes and subtyping

Lecture 3: Measures, proofs, and termination

Lecture 4: Quotient types

10



Lecture Outline

1. Motivation

2. Course Outline

3. Lecture Outline

4. What are refinement types?

5. Refinement vs subtyping: is there a difference?

6. History of refinement types

7. Refinement type systems

8. Liquid Haskell

11



What are refinement types?

A refinement type system is a conservative extension of an

underlying type system that is equipped with:

1. A refinement relation on types:

T <: U ”T refines U”

2. A standard subtyping rule:

Γ ⊢ T <: U Γ ⊢ e : T Γ ⊢ U
Γ ⊢ e : U

12



What are refinement types?

A refinement type system is a conservative extension of an

underlying type system that is equipped with:

1. A refinement relation on types:

T <: U ”T refines U”

2. A standard subtyping rule:

Γ ⊢ T <: U Γ ⊢ e : T Γ ⊢ U
Γ ⊢ e : U

12



What are refinement types?

For example, in a type system with types Int , Nat, Even and Odd:

Nat, Even, Odd <: Int

That is, the types Nat, Even and Odd are refinements of Int .

13



What are refinement types?

Let us consider the operation (+) : Int → Int → Int.

Our subtyping rule allows us to derive the following types for the

expression λ x y.x + y:

Nat → Nat → Int, Even → Even → Int, Odd → Odd → Int.

We will later consider how more precise refinements can be

assigned to this expression, e.g. Nat → Nat → Nat.

14



What are refinement types?

Let us consider the operation (+) : Int → Int → Int.

Our subtyping rule allows us to derive the following types for the

expression λ x y.x + y:

Nat → Nat → Int, Even → Even → Int, Odd → Odd → Int.

We will later consider how more precise refinements can be

assigned to this expression, e.g. Nat → Nat → Nat.

14



What are refinement types?

Let us consider the operation (+) : Int → Int → Int.

Our subtyping rule allows us to derive the following types for the

expression λ x y.x + y:

Nat → Nat → Int, Even → Even → Int, Odd → Odd → Int.

We will later consider how more precise refinements can be

assigned to this expression, e.g. Nat → Nat → Nat.

14



Refinement vs subtyping: is there a difference?

Type refinement is a form of subtyping that is introduced as an

extension to an underlying type system and is:

• strongly conservative: semantics, type-checking and the

equational theory of the underlying (sub)language should

remain unchanged;

• decidable: there is an algorithm that can check whether the

subtyping relation holds between any two types and is

guaranteed to terminate in finite time.

15



Refinement vs subtyping: is there a difference?

Type refinement is a form of subtyping that is introduced as an

extension to an underlying type system and is:

• strongly conservative: semantics, type-checking and the

equational theory of the underlying (sub)language should

remain unchanged;

• decidable: there is an algorithm that can check whether the

subtyping relation holds between any two types and is

guaranteed to terminate in finite time.

15



Refinement vs subtyping: is there a difference?

Type refinement is a form of subtyping that is introduced as an

extension to an underlying type system and is:

• strongly conservative: semantics, type-checking and the

equational theory of the underlying (sub)language should

remain unchanged;

• decidable: there is an algorithm that can check whether the

subtyping relation holds between any two types and is

guaranteed to terminate in finite time.

15



Strong conservativity

Strong conservativity is precisely the property that ensures that

refinement types can be safely integrated into a language while

continuing to make use of existing libraries and tools.

16



Strong conservativity

Semi-formally, given two type theories T1 and T2, if the syntax of

T1 is a sublanguage of T2 then we say that T2 is strongly

conservative over T1 if it:

• is conservative: for any expressible judgement J in T1 then J

is derivable in T1 if and only if it is derivable in T2.

• preserves reduction: for any terms t, u in T1 then t reduces to

u in T1 if and only if t reduces to u in T2.

• preserves equational theory: for any terms t, u in T1 then

t = u in T1 if and only if t = u in T2.

17



Strong conservativity

Semi-formally, given two type theories T1 and T2, if the syntax of

T1 is a sublanguage of T2 then we say that T2 is strongly

conservative over T1 if it:

• is conservative: for any expressible judgement J in T1 then J

is derivable in T1 if and only if it is derivable in T2.

• preserves reduction: for any terms t, u in T1 then t reduces to

u in T1 if and only if t reduces to u in T2.

• preserves equational theory: for any terms t, u in T1 then

t = u in T1 if and only if t = u in T2.

17



Strong conservativity

Semi-formally, given two type theories T1 and T2, if the syntax of

T1 is a sublanguage of T2 then we say that T2 is strongly

conservative over T1 if it:

• is conservative: for any expressible judgement J in T1 then J

is derivable in T1 if and only if it is derivable in T2.

• preserves reduction: for any terms t, u in T1 then t reduces to

u in T1 if and only if t reduces to u in T2.

• preserves equational theory: for any terms t, u in T1 then

t = u in T1 if and only if t = u in T2.

17



Strong conservativity

Semi-formally, given two type theories T1 and T2, if the syntax of

T1 is a sublanguage of T2 then we say that T2 is strongly

conservative over T1 if it:

• is conservative: for any expressible judgement J in T1 then J

is derivable in T1 if and only if it is derivable in T2.

• preserves reduction: for any terms t, u in T1 then t reduces to

u in T1 if and only if t reduces to u in T2.

• preserves equational theory: for any terms t, u in T1 then

t = u in T1 if and only if t = u in T2.

17



History of refinement types

1991: Refinement Types for ML. T. Freeman and F. Pfenning.

Refinement types can be introduced by a rectype declaration:

datatype nat = zero | suc of nat

rectype even = zero | suc (suc even)

rectype odd = suc even

This can be viewed as ‘structural subtyping’ for inductive types.

18



History of refinement types

1991: Refinement Types for ML. T. Freeman and F. Pfenning.

This notion of refinement naturally admits a lattice structure on

types with an intersection (∧) and union (∨) operator.

For example:

even ∧ odd = ⊥

even ∨ odd = nat

18



History of refinement types

1991: Refinement Types for ML. T. Freeman and F. Pfenning.

The principal type of a term is given by the greatest lower bound

of all valid types that it may be assigned. For constructors, this is

simply calculated as the finite intersection over its given types.

18



History of refinement types

1997: Construction of abstract states graphs with PVS. S. Graf

and H. Säıdi.

2002: Predicate abstraction for software verification. C. Flanagan

and S. Qadeer.

Predicate abstraction as applied to type systems allows us to form

types from logical formula with free variables.

For example, given a logical formula Q with a free variable n : N,
then elements of λn.Q are natural numbers for which Q holds.

19



History of refinement types

1997: Construction of abstract states graphs with PVS. S. Graf

and H. Säıdi.

2002: Predicate abstraction for software verification. C. Flanagan

and S. Qadeer.

Predicate abstraction as applied to type systems allows us to form

types from logical formula with free variables.

For example, given a logical formula Q with a free variable n : N,
then elements of λn.Q are natural numbers for which Q holds.

19



History of refinement types

1997: Construction of abstract states graphs with PVS. S. Graf

and H. Säıdi.

2002: Predicate abstraction for software verification. C. Flanagan

and S. Qadeer.

Predicate abstraction as applied to type systems allows us to form

types from logical formula with free variables.

For example, given a logical formula Q with a free variable n : N,
then elements of λn.Q are natural numbers for which Q holds.

19



History of refinement types

2006: Inference of user-defined type qualifiers and qualifier rules.

B. Chin, S. Markstrum, T. D. Millstein, and J. Palsberg.

2008: Liquid Types. P. M. Rondon, M. Kawaguchi, R. Jhala.

Liquid types are a class of refinement types that are introduced by

predicate abstraction over logical expressions that are constructed

from a restricted, decidable set of (quantifier-free) predicates.

20



History of refinement types

2006: Inference of user-defined type qualifiers and qualifier rules.

B. Chin, S. Markstrum, T. D. Millstein, and J. Palsberg.

2008: Liquid Types. P. M. Rondon, M. Kawaguchi, R. Jhala.

Liquid types are a class of refinement types that are introduced by

predicate abstraction over logical expressions that are constructed

from a restricted, decidable set of (quantifier-free) predicates.

20



History of refinement types

2006: Inference of user-defined type qualifiers and qualifier rules.

B. Chin, S. Markstrum, T. D. Millstein, and J. Palsberg.

2008: Liquid Types. P. M. Rondon, M. Kawaguchi, R. Jhala.

A liquid type judgement is given by:

Γ ⊢Q e : τ

where Q is a qualifier set of decidable predicates and τ is a

refinement type of the form {x : σ | P}. P is a predicate over σ

that can be constructed from Q.

21



History of refinement types

2015: Functors are Type Refinement Systems. P. Melliès and N.

Zeilberger.

Erasure of type refinements can be modelled as a functor and this

presents a category-theoretic perspective of refinement type

systems.

That is, a type refinement system is a functor F : R → T where T

is the underlying type theory and R is the refinement system.

22



History of refinement types

2015: Functors are Type Refinement Systems. P. Melliès and N.

Zeilberger.

Erasure of type refinements can be modelled as a functor and this

presents a category-theoretic perspective of refinement type

systems.

That is, a type refinement system is a functor F : R → T where T

is the underlying type theory and R is the refinement system.

22



Refinement type systems

Refinement type systems have been implemented for a variety of

languages including:

OCaML: Dsolve: Safety Verification via Liquid Types. M.

Kawaguchi, P. M. Rondon, and R. Jhala. 2010.

C: Low-level liquid types. Patrick M Rondon, Ming Kawaguchi,

and Ranjit Jhala. 2010.

Typescript: Refinement types for TypeScript. P. Vekris, B.

Cosman, and R. Jhala. 2016.

23



Liquid Haskell

Liquid Haskell adds liquid types to Haskell and discharges proof

obligations to an external SMT solver.

Based on the original work on Liquid Types, and has a decidable

expression language for predicates.

24



Liquid Haskell

Type refinements must be defined within a special comment block

and are processed after standard type-checking, e.g.

{−@ type Nat = {n : Int | n > 0} @−}

A refinement type in Liquid Haskell is introduced with a typed

binding and a predicate that is constructed from the restricted

logical expression language.

25



Liquid Haskell

The types of function definitions can similarly be refined within

special comment blocks. For example:

{−@ church :: Nat → (a → a) → a → a @−}
church 0 f = id

church n f = church (n − 1) f . f

The above type definition for church will ensure it can only be

applied to integers greater than or equal to 0 for which it will

provably terminate.

26



Liquid Haskell

Example of code that will be rejected with a compile-time error by

Liquid Haskell:

Example 1

{−@ mult :: Nat → Int → Nat @−}
mult m n = m ∗ n

Example 2

{−@ type NonEmpty a = { xs:[a] | len xs > 0 } @−}

{−@ rest :: NonEmpty a → NonEmpty a @−}
rest (x : xs) = xs

27



Liquid Haskell

Example of code that will be rejected with a compile-time error by

Liquid Haskell:

Example 1

{−@ mult :: Nat → Int → Nat @−}
mult m n = m ∗ n

Example 2

{−@ type NonEmpty a = { xs:[a] | len xs > 0 } @−}

{−@ rest :: NonEmpty a → NonEmpty a @−}
rest (x : xs) = xs

27



Next Lecture

In the next lecture we will look more closely at the refinement logic

of Liquid Haskell and its subtyping rules. We’ll consider a number

of practical examples to illustrate how refinement types can be

applied.

We will also consider refinements of both inductive algebraic

datatypes and record types.

Please join me in the labs to experience programming with

refinement types in Liquid Haskell yourself.

28


