
Refinement Types in Haskell

Lecture 2: Refinement logic, datatypes and subtyping

Brandon Hewer

1

Today’s Lecture

In today’s lecture, we will begin with a brief account of the syntax

and semantics of Liquid Haskell’s refinement logic.

We will then discuss SMT decidability and give a high-level

overview of Liquid Haskell’s verification procedure.

Finally, we will switch to our main focus which is to introduce how

a variety of constructs in Haskell such as record types and inductive

algebraic datatypes can be refined and used in Liquid Haskell.

2

Lecture Outline

1. Today’s Lecture

2. Lecture Outline

3. Syntax of the refinement logic

4. Semantics of the refinement logic

5. Verification and SMT decidability

6. Subtyping

7. Refinement types in Liquid Haskell

8. Guards

9. Higher-order functions

3

Syntax of the refinement logic

The refinement logic of Liquid Haskell is based upon a first-order

logic with uninterpreted function symbols.

Constants Examples

Booleans True, False

Integers −27, 0, 4, 107

Doubles 2.46, −9.1, 3.289

Strings ””, ”as”, ”astring”

Lists [] , [1,3] , [[”a”], []]

4

Syntax of the refinement logic

The refinement logic of Liquid Haskell is based upon a first-order

logic with uninterpreted function symbols.

Operation Syntax

Addition x + y

Subtraction x − y

Multiplication x ∗ y

Division x / y

Modulus x mod y

4

Syntax of the refinement logic

The refinement logic of Liquid Haskell is based upon a first-order

logic with uninterpreted function symbols.

Relation Syntax

Equality x == y or x = y

Not equal x /= y

Orderings x < y, x > y, x <= y, x >= y

4

Syntax of the refinement logic

The refinement logic of Liquid Haskell is based upon a first-order

logic with uninterpreted function symbols.

Logical operator Syntax

And p && q

Or p || q

Not not p

Implication p => q or p ==> q,

If and only if p <=> q

4

Syntax of the refinement logic

The refinement logic of Liquid Haskell is based upon a first-order

logic with uninterpreted function symbols.

Expression Syntax

Variables x

Constants c

Relations/Logical e1 r e2

Application f e1 e2 ... en

If-then-else if p then e1 else e2

4

Syntax of the refinement logic

Predicates in Liquid Haskell are merely boolean-valued expressions.

Examples of predicates include:

m ∗ n <= m + n

xs == [] <=> x %2 = 0

if len ys > 0 then ys = xs else ys = zs

False => not p && p

5

Semantics of the refinement logic

The syntax of Liquid Haskell’s refinement logic supports the

definition of decidable predicates that depend on a context of

typed bindings and guards.

A guard is a predicate that is assumed to be true when it appears

in a given environment.

6

Semantics of the refinement logic

A Liquid Haskell predicate in an environment can simply be

interpreted as a boolean valued Haskell function.

Typed bindings in an environment correspond to arguments of this

function, while guards are translated to implications.

For example, the predicate P = (p && q => r) in the environment

p :: Bool, q :: Bool, r :: Bool can be interpreted as follows:

P :: Bool → Bool → Bool → Bool

P True True False = False

P = True

7

Semantics of the refinement logic

Semantics of guarded predicates

A context Γ consists of typed bindings of the form x : τ and guards

P where P is a predicate in the refinement logic.

If we write Γ;P to denote the extension of the context Γ by the

predicate P, then we have the following interpretation:

J Γ;P |= Q K := JΓ |= P ⇒ QK

8

Semantics of the refinement logic

Satisfiability. A predicate P is satisfiable if there exists arguments

for which its interpretation will evaluate to True.

Validity. A predicate P is valid if its interpretation evaluates to

True for all arguments.

9

Verification and SMT decidability

Liquid Haskell’s refinement logic is SMT-decidable.

A decidable SMT (satisfiability modulo theories) theory is:

• an extension of propositional logic that can incorporate

additional theories such as linear arithmetic and

proof-by-logical-evaluation;

• such that there is an algorithm (SMT solver) that can

correctly determine the truth value of any well-formed

statement in the theory in finite time.

10

Verification and SMT decidability

Liquid Haskell’s refinement logic is SMT-decidable.

A decidable SMT (satisfiability modulo theories) theory is:

• an extension of propositional logic that can incorporate

additional theories such as linear arithmetic and

proof-by-logical-evaluation;

• such that there is an algorithm (SMT solver) that can

correctly determine the truth value of any well-formed

statement in the theory in finite time.

10

Verification and SMT decidability

Liquid Haskell’s refinement logic is SMT-decidable.

A decidable SMT (satisfiability modulo theories) theory is:

• an extension of propositional logic that can incorporate

additional theories such as linear arithmetic and

proof-by-logical-evaluation;

• such that there is an algorithm (SMT solver) that can

correctly determine the truth value of any well-formed

statement in the theory in finite time.

10

Verification and SMT decidability

To verify a program, Liquid Haskell will:

1. interpret the logical conditions given by user-specified

refinements as verification conditions in an SMT logic;

2. query an external SMT solver (e.g. Z3) to determine the

satisfiability of these conditions and thus decide whether your

program is type safe.

11

Subtyping

In order to generate the verification conditions to be validated by

an SMT solver, Liquid Haskell introduces a number of key

subtyping rules.

Erasure

Γ ⊢ τ Γ, x : τ ⊢ P

Γ ⊢ {x : τ | P} <: τ

12

Subtyping

In order to generate the verification conditions to be validated by

an SMT solver, Liquid Haskell introduces a number of key

subtyping rules.

Implies

Valid JΓ |= P ⇒ QK
Γ ⊢ {x : τ | P} <: {x : τ | Q}

12

Subtyping

In order to generate the verification conditions to be validated by

an SMT solver, Liquid Haskell introduces a number of key

subtyping rules.

Functions

Γ ⊢ τ2 <: τ1 Γ[x 7→ τ2] ⊢ σ1 <: σ2
Γ ⊢ (x : τ1 → σ1) <: (x : τ2 → σ2)

12

Subtyping

In order to generate the verification conditions to be validated by

an SMT solver, Liquid Haskell introduces a number of key

subtyping rules.

Polymorphism

Γ ⊢ τ <: σ
Γ ⊢ (forall a.τ) <: (forall a.σ)

12

Refinement types in Liquid Haskell

In Liquid Haskell, a refinement type has the form {x : T | P} and

can be defined in a Liquid Haskell block by means of a type

synonym:

{−@ type TRUE = { :() | True } @−}

{−@ type Even = { n:Int | n mod 2 = 0 } @−}

{−@ type NonEmpty a = { xs:[a] | len xs /= 0 } @−}

{−@ type Monotonic = m:Int → {n:Int | m <= n} @−}

13

Refinement types in Liquid Haskell

In Liquid Haskell, a refinement type has the form {x : T | P} and

can be defined in a Liquid Haskell block by means of a type

synonym:

{−@ type TRUE = { :() | True } @−}

{−@ type Even = { n:Int | n mod 2 = 0 } @−}

{−@ type NonEmpty a = { xs:[a] | len xs /= 0 } @−}

{−@ type Monotonic = m:Int → {n:Int | m <= n} @−}

13

Refinement types in Liquid Haskell

In Liquid Haskell, a refinement type has the form {x : T | P} and

can be defined in a Liquid Haskell block by means of a type

synonym:

{−@ type TRUE = { :() | True } @−}

{−@ type Even = { n:Int | n mod 2 = 0 } @−}

{−@ type NonEmpty a = { xs:[a] | len xs /= 0 } @−}

{−@ type Monotonic = m:Int → {n:Int | m <= n} @−}

13

Refinement types in Liquid Haskell

In Liquid Haskell, a refinement type has the form {x : T | P} and

can be defined in a Liquid Haskell block by means of a type

synonym:

{−@ type TRUE = { :() | True } @−}

{−@ type Even = { n:Int | n mod 2 = 0 } @−}

{−@ type NonEmpty a = { xs:[a] | len xs /= 0 } @−}

{−@ type Monotonic = m:Int → {n:Int | m <= n} @−}

13

Refinement types in Liquid Haskell

In Liquid Haskell, a refinement type has the form {x : T | P} and

can be defined in a Liquid Haskell block by means of a type

synonym:

{−@ type TRUE = { :() | True } @−}

{−@ type Even = { n:Int | n mod 2 = 0 } @−}

{−@ type NonEmpty a = { xs:[a] | len xs /= 0 } @−}

{−@ type Monotonic = m:Int → {n:Int | m <= n} @−}

13

Refinement types in Liquid Haskell: predicates

Predicate synonyms can also be defined in a Liquid Haskell:

{−@ predicate IsNotDivisibleBy M N = M mod N /= 0 @−}

{−@ predicate NotReducible M N = N = 1 || IsNotDivisibleBy M N @−}

{−@ predicate IsZero M N = M = 0 && N = 1 @−}

{−@ predicate IsRational M N

= NotReducible M N && NotReducible N M || IsZero M N @−}

{−@ type Positive = { n:Int | n > 0 } @−}

{−@ type Rational

= { m:(Int, Positive) | IsRational (fst m) (snd m) } @−}

14

Refinement types in Liquid Haskell: predicates

Predicate synonyms can also be defined in a Liquid Haskell:

{−@ predicate IsNotDivisibleBy M N = M mod N /= 0 @−}

{−@ predicate NotReducible M N = N = 1 || IsNotDivisibleBy M N @−}

{−@ predicate IsZero M N = M = 0 && N = 1 @−}

{−@ predicate IsRational M N

= NotReducible M N && NotReducible N M || IsZero M N @−}

{−@ type Positive = { n:Int | n > 0 } @−}

{−@ type Rational

= { m:(Int, Positive) | IsRational (fst m) (snd m) } @−}

14

Refinement types in Liquid Haskell: predicates

Predicate synonyms can also be defined in a Liquid Haskell:

{−@ predicate IsNotDivisibleBy M N = M mod N /= 0 @−}

{−@ predicate NotReducible M N = N = 1 || IsNotDivisibleBy M N @−}

{−@ predicate IsZero M N = M = 0 && N = 1 @−}

{−@ predicate IsRational M N

= NotReducible M N && NotReducible N M || IsZero M N @−}

{−@ type Positive = { n:Int | n > 0 } @−}

{−@ type Rational

= { m:(Int, Positive) | IsRational (fst m) (snd m) } @−}

14

Refinement types in Liquid Haskell: predicates

Predicate synonyms can also be defined in a Liquid Haskell:

{−@ predicate IsNotDivisibleBy M N = M mod N /= 0 @−}

{−@ predicate NotReducible M N = N = 1 || IsNotDivisibleBy M N @−}

{−@ predicate IsZero M N = M = 0 && N = 1 @−}

{−@ predicate IsRational M N

= NotReducible M N && NotReducible N M || IsZero M N @−}

{−@ type Positive = { n:Int | n > 0 } @−}

{−@ type Rational

= { m:(Int, Positive) | IsRational (fst m) (snd m) } @−}

14

Refinement types in Liquid Haskell: predicates

Predicate synonyms can also be defined in a Liquid Haskell:

{−@ predicate IsNotDivisibleBy M N = M mod N /= 0 @−}

{−@ predicate NotReducible M N = N = 1 || IsNotDivisibleBy M N @−}

{−@ predicate IsZero M N = M = 0 && N = 1 @−}

{−@ predicate IsRational M N

= NotReducible M N && NotReducible N M || IsZero M N @−}

{−@ type Positive = { n:Int | n > 0 } @−}

{−@ type Rational

= { m:(Int, Positive) | IsRational (fst m) (snd m) } @−}

14

Refinement types in Liquid Haskell: pairs and functions

Liquid Haskell supports a restricted form of both dependent pairs

and functions in which bound variables may only appear within

predicate refinements.

{−@ type Inverses = (x : Int , {y : Int | x + y = 0}) @−}

{−@ type Sized a = n:Nat → {xs:[a] | len xs = n} @−}

{−@ type Factorise = o:Int → (m:Int, { n: Int | o = m ∗ n }) @−}

15

Refinement types in Liquid Haskell: pairs and functions

Liquid Haskell supports a restricted form of both dependent pairs

and functions in which bound variables may only appear within

predicate refinements.

{−@ type Inverses = (x : Int , {y : Int | x + y = 0}) @−}

{−@ type Sized a = n:Nat → {xs:[a] | len xs = n} @−}

{−@ type Factorise = o:Int → (m:Int, { n: Int | o = m ∗ n }) @−}

15

Refinement types in Liquid Haskell: pairs and functions

Liquid Haskell supports a restricted form of both dependent pairs

and functions in which bound variables may only appear within

predicate refinements.

{−@ type Inverses = (x : Int , {y : Int | x + y = 0}) @−}

{−@ type Sized a = n:Nat → {xs:[a] | len xs = n} @−}

{−@ type Factorise = o:Int → (m:Int, { n: Int | o = m ∗ n }) @−}

15

Refinement types in Liquid Haskell: sums and record types

Liquid Haskell also supports refinements of inductive sum and

record types.

Sized Vectors

data Vector a = V { size :: Int , elems :: [a] }
data Vector a = V { size :: Nat, elems :: { xs :[a] | len xs = size } }

16

Refinement types in Liquid Haskell: sums and record types

Liquid Haskell also supports refinements of inductive sum and

record types.

Binary Search Trees

data Tree a

= Leaf

| Node { root :: a

, left :: Tree a

, right :: Tree a

}

16

Refinement types in Liquid Haskell: sums and record types

Liquid Haskell also supports refinements of inductive sum and

record types.

Binary Search Trees

{−@

data Tree a

= Leaf

| Node { root :: a

, left :: Tree {v:a | v < a}
, right :: Tree {v:a | v > a}
}

@−}

16

Guards

Let us consider the following function and its refined type:

insert :: Ord a => a → Tree a → Tree a

insert v Leaf = Node v Leaf Leaf

insert v t@(Node x l r)

| v < x = Node k (insert v l) r

| v > x = Node k l (insert v r)

| otherwise = t

How is Liquid Haskell aware of the assumptions that introduced by

guard expressions? This is precisely our reason for including guards

in our type-checking environment.

17

Guards

Let us consider the following function and its refined type:

insert :: Ord a => a → Tree a → Tree a

insert v Leaf = Node v Leaf Leaf

insert v t@(Node x l r)

| v < x = Node k (insert v l) r

| v > x = Node k l (insert v r)

| otherwise = t

How is Liquid Haskell aware of the assumptions that introduced by

guard expressions? This is precisely our reason for including guards

in our type-checking environment.

17

Higher-order functions

Recall the following refinement types for sized vectors:

{−@ data Vector a

= V { size :: Nat, elems :: { xs :[a] | len xs = size } }
@−}

We can define a size-sensitive fold over vectors as follows:

foldV :: Vector a → (Int → a → b → b) → b → b

foldV (V []) z = z

foldV (V sz (x : xs)) f z = f sz x $ foldV (V (sz − 1) xs) f z

18

Higher-order functions

Recall the following refinement types for sized vectors:

{−@ data Vector a

= V { size :: Nat, elems :: { xs :[a] | len xs = size } }
@−}

We can define a size-sensitive fold over vectors as follows:

foldV :: Vector a → (Int → a → b → b) → b → b

foldV (V []) z = z

foldV (V sz (x : xs)) f z = f sz x $ foldV (V (sz − 1) xs) f z

18

Higher-order functions

We can define a size-sensitive fold over vectors as follows:

foldV :: (Int → a → b → b) → b → Vector a → b

foldV z (V []) = z

foldV f z (V sz (x : xs)) = f sz x $ foldV f z $ V (sz − 1) xs

Let us consider applying this fold to take the sum of each element

multiplied by the size of the vector for which they are the head:

sumSize :: Vector Int → Int

sumSize v = foldV v (\s m n → n + s ∗ m) 0

Can we refine the type of sumSize to Vector Nat → Nat? Yes!

19

Higher-order functions

We can define a size-sensitive fold over vectors as follows:

foldV :: (Int → a → b → b) → b → Vector a → b

foldV z (V []) = z

foldV f z (V sz (x : xs)) = f sz x $ foldV f z $ V (sz − 1) xs

Let us consider applying this fold to take the sum of each element

multiplied by the size of the vector for which they are the head:

sumSize :: Vector Int → Int

sumSize v = foldV v (\s m n → n + s ∗ m) 0

Can we refine the type of sumSize to Vector Nat → Nat? Yes!

19

Higher-order functions

Liquid Haskell incorporates inference for higher-order functions to

determine logical conditions that are certain to hold.

For example, it can be inferred that we only apply the folding

function of foldV to the sizes of vectors, which we know must be

natural numbers.

As such, Liquid Haskell can infer that our foldV function has the

refined type: (Nat → a → b → b) → b → Vector a → b.

20

Higher-order functions

Liquid Haskell incorporates inference for higher-order functions to

determine logical conditions that are certain to hold.

For example, it can be inferred that we only apply the folding

function of foldV to the sizes of vectors, which we know must be

natural numbers.

As such, Liquid Haskell can infer that our foldV function has the

refined type: (Nat → a → b → b) → b → Vector a → b.

20

Higher-order functions

Liquid Haskell incorporates inference for higher-order functions to

determine logical conditions that are certain to hold.

For example, it can be inferred that we only apply the folding

function of foldV to the sizes of vectors, which we know must be

natural numbers.

As such, Liquid Haskell can infer that our foldV function has the

refined type: (Nat → a → b → b) → b → Vector a → b.

20

Higher-order functions: a caveat

When termination checking is turned on for Liquid Haskell, as it is

by default, you’ll find that our definition of foldV yields an error.

Without any additional information, Liquid Haskell cannot prove

that foldV terminates. However, there is an easy fix: termination

metrics.

We need only provide the following refinement for the type of foldV:

foldV :: (Nat → a → b → b) → b → v:Vector a → b / [size v]

21

Next Lecture

In the next lecture we will look more closely at termination

metrics, measures, and the manual proof combinators available in

Liquid Haskell.

Please join me in the labs tomorrow to practice applying

refinements to trees, vectors and more with a few exercises.

22

