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Today’s Lecture

In today’s lecture, we will begin by introducing the notion of a

measure in Liquid Haskell and consider a few examples.

We will then introduce termination metrics and demonstrate how

they can be used through the example of parallel substitutions.

We will consider how to write manual proofs in Liquid Haskell

using reflection and the proof combinators library.

Finally, we will introduce proof by logical evaluation, and then

present a correctness proof for Hutton’s razor.
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Motivation for measures

Thus far, we have considered simple examples of refinement types

whose refinement predicates range over simple relations and

operations on numbers and booleans.

Indeed, the only additional structure that we have been subtly

making use of is the len function on lists. For example:

type Vector a N = { xs:[a] | len xs = N }
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Motivation for measures

What if we wished to define predicates that made use of additional

structure on our types? For example, lists that contain even

numbers, lists that do not contain duplicates, or even balanced

binary search trees.

The refinement logic of Liquid Haskell that we have considered

thus far is insufficient to define predicates for these types.

This is what precisely what measures are intended to address, and

the len function was in fact our first use of a measure!
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What is a measure?

A measure is simply a function on an algebraic datatype that

explicitly matches on each constructor of that type.

The len function is a measure on lists that is defined as follows:

{−@ measure len @−}
len :: [a] → Int

len [] = 0

len ( :xs) = 1 + len xs

However, the following is not a measure on lists:

isNotEmpty :: Eq a => [a] → Bool

isNotEmpty xs = xs == []
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What is a measure?

To define our own measures on datatypes, we need only define a

Haskell function that matches on each constructor and annotate it

with {−@ measure name of function @−}.

Example 1: Lists of even numbers

{−@ measure isAllEven @−}
isAllEven :: [ Int ] → Bool

isAllEven [] = True

isAllEven (n : ns) = n `mod` 2 == 0 && isAllEven ns

{−@ type Evens = { xs:[Int ] | isAllEven xs } @−}
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What is a measure?

To define our own measures on datatypes, we need only define a

Haskell function that matches on each constructor and annotate it

with {−@ measure name of function @−}.

Example 2: Lists of even numbers (again)

{−@ measure odds @−}
odds :: [ Int ] → [Int]

odds [] = []

odds (n : ns)

| n `mod` 2 /= 0 = n : odds ns

| otherwise = odds ns

{−@ type Evens = { xs:[Int ] | odds xs = [] } @−}
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Example: Balanced BSTs

Let us now consider using a measure to define balanced binary

search trees in Liquid Haskell.

We begin with a simple definition of binary trees:

data Tree a

= Leaf

| Node { root :: a, left :: Tree a, right :: Tree a }
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Example: Balanced BSTs

Let us now consider using a measure to define balanced binary

search trees in Liquid Haskell.

Next, we implement a measure for the depth of a tree:

{−@ measure depth @−}
depth :: Tree a → Int

depth Leaf = 0

depth (Node l r)

| dl >= dr = 1 + dl

| otherwise = 1 + dr

where

dl = depth l

dr = depth r
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Example: Balanced BSTs

Let us now consider using a measure to define balanced binary

search trees in Liquid Haskell.

With the depth measure, we define balanced BSTs as follows:

{−@ predicate IsBalanced T U

= depth T − depth U <= 1 && depth U − depth T <= 1

@−}

{−@ data Tree a

= Leaf

| Node { root :: a

, left :: Tree { v:a | v < root }
, right :: { t :Tree { v:a | v > root } | IsBalanced left t }
}

@−}
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Termination metrics

By default, Liquid Haskell will perform termination checking on all

functions.

Without any additional information being provided, termination

checking is restricted to structural termination.

Informally, this means that each recursive call must be applied to a

structurally smaller input for at least one of the input arguments.

Unfortunately, this condition is particularly limiting, and we do not

need to look far to find an example where it is insufficient.
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Termination metrics

Consider the following definition of the merge function:

merge :: Ord a => [a] → [a] → [a]

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| x < y = x : merge xs (y:ys)

| otherwise = y : merge ys (x:xs)

This definition is not structurally terminating as neither of its

inputs are strictly smaller at each recursive call.

We need to prove to Liquid Haskell that merge is terminating in

another way: by using termination metrics.
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Termination metrics

A termination metric in a given context is simply a set of

well-formed natural number-valued expressions in that context.

Intuitively, each expression of a termination metric corresponds to

a ‘size’ that we expect to reduce throughout the computation.

A recursive function provably terminates if for each recursive call,

at least one expression in its termination metric becomes provably

smaller after substituting for the new arguments.
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Termination metrics

For example, in Lecture 2 we introduced the following fold function

on sized vectors:

{−@ foldV :: (Nat → a → b → b) → b → v:Vector a → b @−}
foldV z (V []) = z

foldV f z (V sz (x : xs)) = f sz x $ foldV f z $ V (sz − 1) xs

A valid termination metric in the output of foldV can make use of

the bound variable v, e.g. size v.
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Termination metrics

We mentioned previously that this definition of foldV does not

actually type-check in Liquid Haskell. The following correction

addresses this:

{−@ foldV :: (Nat → a → b → b) → b → v:Vector a → b / [size v] @−}
foldV z (V []) = z

foldV f z (V sz (x : xs)) = f sz x $ foldV f z $ V (sz − 1) xs

In general, termination metrics are introduced by merely adding a /

followed by a sequence of integer-valued expressions.
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Termination metrics

Returning to our example of the merge function on lists, we can

apply termination metrics to prove to Liquid Haskell that it

terminates as follows:

{−@ merge :: xs :[a] → ys:[a] → [a] / [ len xs + len ys ]@−}
merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| x < y = x:(merge xs (y:ys))

| otherwise = y:(merge ys (x:xs))

It is not difficult to see that the expression len xs + len ys does

indeed reduce at each step.
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Example: parallel substitutions

We will now consider a more involved example that makes use of

both termination metrics and measures: parallel substitution for de

Bruijin indexed lambda terms (presented in 3.3 in Dependent

Types and Multi Monadic Effects in F*).
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Example: parallel substitutions

First, we will define the types of de Bruijin indexed lambda terms

and substitutions in Haskell as follows:

data Expr = Var Int | Lam Expr | App Expr Expr

{−@ type Expr = Var Nat | Lam Expr | App Expr Expr @−}

{−@ type Subst = [(Nat, Expr)] @−}

Note: we will consider how to define the type of closed lambda

terms in tomorrow’s lab.
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Example: parallel substitutions

Next, we define the following measure that corresponds to the

‘size’ of an expression:

{−@ measure elen @−}
{−@ elen :: Expr → Nat @−}
elen (Var v) = 0

elen (Lam e) = 1 + elen e

elen (App e1 e2) = 1 + elen e1 + elen e2

16



Example: parallel substitutions

Meanwhile, for substitutions we define a measure that checks

whether a substitution is simply an α-renaming:

{−@ measure mysnd @−}
snd’ :: (a, b) → b

snd’ ( , y) = y

{−@ measure isVar @−}
isVar :: Expr → Bool

isVar (Var ) = True

isVar = False

{−@ measure isRenaming @−}
isRenaming :: Subst → Bool

isRenaming [] = True

isRenaming (vx:sus) = isVar (snd’ vx) && isRenaming sus
17



Example: parallel substitutions

Next, we introduce a refined type of expressions that are indexed

over both an expression and a substitution:

{−@ type SExpr E S

= {v:Expr | ( isVar E && isRenaming S) => isVar v }
@−}

This will be the output type of our parallel substitution operation

on expressions.
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Example: parallel substitutions

For variables, we can define the following simple substitution

function:

{−@ sub :: su:Subst → v:Nat →
{v:Expr | isRenaming su => isVar v } @−}

sub [] v = Var v

sub ((vx,x): su) v

| v == vx = x

| otherwise = sub su v
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Example: parallel substitutions

To handle lambda expressions, we will make use of the following

auxiliary definition for the type of substitutions that are simply

renamings, together with the incrementing substitution:

{−@ type RenamingSubst = { s:Subst | isRenaming s } @−}

{−@ incrsubst :: RenamingSubst @−}
incrsubst :: Subst

incrsubst = [ ( i , Var $ i + 1) | i <− [0..] ]
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Example: parallel substitutions

Finally, we can bring all of this together to define our parallel

substitution function. First, let us introduce its type:

{−@ subst :: e:Expr → s:Subst → SExpr e s

/ [ if ( isVar e) then 0 else 1

, if (isRenaming s) then 0 else 1

, elen e

]

@−}

To satisfy this type, our definition of subst must become smaller at

each step by either being applied to a variable, being applied to a

renaming substitution or becoming smaller in its ‘size’.
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Example: parallel substitutions

We conclude by defining our substitution function as follows:

subst (Var v) s = sub su v

subst (App e1 e2) s = App (subst e1 s) (subst e2 s)

subst (Lam e) s | isRenaming s =

Lam $ subst e

$ (0, Var 0) : [ ( i , subst (sub su ( i−1)) incrsubst ) | i <− [1..] ]

subst (Lam e) su =

Lam $ subst e

$ (0, Var 0) : [ ( i , subst (sub su ( i−1)) incrsubst ) | i <− [1..] ]

As we should hope, this does indeed type-check in Liquid Haskell.
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Reflection and proof combinators

Programs are proofs!
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Reflection and proof combinators

This correspondence finds its most explicit application in proof

assistants such as Agda, Coq, Lean and Isabelle.

An essential feature of proving theorems in proof assistants is the

reflection of definitional equalities in the type system.

By default, the defining equations of functions are not reflected in

the refinement logic of Liquid Haskell. However, this can be

addressed by means of reflection.
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Reflection and proof combinators

In Liquid Haskell, to reflect both inductive data constructors and

functions, we add {−@ LIQUID ”−−reflection” @−} to our file and

annotate functions we wish to reflect with

{−@ reflect name of function @−}.

Example: Hutton’s Razor

data Expr = Val Int | Add Expr Expr

{−@ reflect eval @−}
eval :: Expr → Int

eval (Val n) = n

eval (Add e1 e2) = eval e1 + eval e2
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Reflection and proof combinators

Reflection transforms Liquid Haskell into a theorem prover.

To take advantage of this Liquid Haskell provides a proof

combinator library that can be imported with:

import Language.Haskell. Liquid .ProofCombinators
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Reflection and proof combinators

Combinators in Liquid Haskell’s proof library include:

Composition of equality proofs

(===) :: x:a → y:{a | y = x} → {v:a | v = x && v = y}
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Reflection and proof combinators

Combinators in Liquid Haskell’s proof library include:

Composition of ordering proofs

(=<=) :: x:a → y:{a | x <= y} → {v:a | v = y}
(=>=) :: x:a → y:{a | x >= y} → {v:a | v = y}
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Reflection and proof combinators

Combinators in Liquid Haskell’s proof library include:

Horizontal proof composition (’because’)

(?) :: forall a b <pa :: a → Bool, pb :: b → Bool>.

a<pa> → b<pb> → a<pa>
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Reflection and proof combinators

Combinators in Liquid Haskell’s proof library include:

Triviality and absurdity

type Proof = ()

trivial :: {v : Proof | True}
unreachable :: {v : Proof | False}
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Reflection and proof combinators

Combinators in Liquid Haskell’s proof library include:

Proof holes and QED

data QED = Admit | QED

(∗∗∗) :: a → p:QED → { if (isAdmit p) then false else true }
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Reflection and proof combinators

With some of the proof combinators that we have just introduced,

let us consider how to prove associativity of concatenation for the

following custom list type:

data List a = Nil | Cons a ( List a)

(++) :: List a → List a → List a

Nil ++ ys = ys

Cons x xs ++ ys = Cons x (xs ++ ys)
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Reflection and proof combinators

data List a = Nil | Cons a ( List a)

{−@ assoc :: xs : List a → ys:List a → zs:List a

→ xs ++ (ys ++ zs) == (xs ++ ys)

@−}
assoc Nil ys zs

= Nil <> (y <> z)

=== y <> z

=== (Nil <> y) <> z

∗∗∗ QED
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Reflection and proof combinators

data List a = Nil | Cons a ( List a)

{−@ assoc :: xs : List a → ys:List a → zs:List a

→ xs ++ (ys ++ zs) == (xs ++ ys)

@−}
assoc (Cons x xs) ys zs

= (Cons x xs) <> (y <> z)

=== Cons x (xs <> (y <> z))

=== Cons x ((xs <> y) <> z) ? assoc xs y z

=== (Cons x (xs <> y)) <> z

=== ((Cons x xs) <> y) <> z

∗∗∗ QED
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Reflection and proof combinators

As a second example, we will consider how we can write a proof

that the Add constructor of Hutton’s Razor is associative under the

eval function.

In particular, we want to construct a function of the following type:

{−@ evalAssoc

:: e1:Expr → e2:Expr → e3:Expr

→ { eval (Add e1 (Add e2 e3)) = eval (Add (Add e1 e2) e3) }
@−}
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Reflection and proof combinators

We can construct a proof of this theorem as follows:

evalAssoc e1 e2 e3 =

eval (Add e1 (Add e2 e3))

=== eval e1 + eval (Add e2 e3)

=== eval e1 + eval e2 + eval e3

=== eval (Add e1 e2) + eval e3

=== eval (Add (Add e1 e2) e3)

∗∗∗ QED
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Proof by logical evaluation

Notably, the only manual work we performed to construct the

proof evalAssoc was to layout each of the unfolding steps along the

definitional equalities of evalAssoc. Liquid Haskell took care of

associativity of integer addition for us.

But, in the case that we need only unfold along a (small) finite

number of definitional equalities to construct a proof, then this is

also a mechanical process that can be automated!

Indeed, Liquid Haskell provides a feature for handling this part of

the proof for us too: proof by logical evaluation.
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Proof by logical evaluation

Proof by logical evaluation (PLE) is a guard-sensitive normalisation

procedure that incorporates various additional features such as

rewriting (REST 2012, Z.Grannan et. al.).

PLE can be enabled for a specific proof by annotating it with

{−@ ple name of function @−} or for an entire file with

{−@ LIQUID ”−−reflection” @−}.
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Proof by logical evaluation

Let us again consider constructing a proof of evalAssoc, but this

time we will make use of PLE:

{−@ ple evalAssoc @−}
{−@ evalAssoc

:: e1:Expr → e2:Expr → e3:Expr

→ { eval (Add e1 (Add e2 e3)) = eval (Add (Add e1 e2) e3) }
@−}
evalAssoc = trivial
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Next Lecture

In the next lecture we will introduce quotient types, consider how

they can be integrated into a refinement type system.

We will consider examples that demonstrate the expressive power

of quotients, and consider alternative definitions for types we’ve

already introduced.

Please join me in the lab tomorrow where we will prove the

correctness of a compiler for Hutton’s Razor using the techniques

introduced in today’s lecture.
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